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Abstract. Matrix factorization underlies a large variety of computer vision ap-
plications. It is a particularly challenging problem for large-scale applications
and when there exist outliers and missing data. In this paper, we propose a novel
probabilistic model called Probabilistic Robust Matrix Factorization (PRMF) to
solve this problem. In particular, PRMF is formulated with a Laplace error and
a Gaussian prior which correspond to an ℓ1 loss and an ℓ2 regularizer, respec-
tively. For model learning, we devise a parallelizable expectation-maximization
(EM) algorithm which can potentially be applied to large-scale applications. We
also propose an online extension of the algorithm for sequential data to offer fur-
ther scalability. Experiments conducted on both synthetic data and some practical
computer vision applications show that PRMF is comparable to other state-of-
the-art robust matrix factorization methods in terms of accuracy and outperforms
them particularly for large data matrices.

1 Introduction

Matrix factorization (a.k.a. matrix decomposition) is a fundamental topic in linear alge-
bra and numerical analysis. It also underlies many applications in computer vision and
pattern recognition, e.g., structure from motion (SfM) [1] and non-rigid 3D reconstruc-
tion [2], which can naturally be formulated as low-rank matrix factorization problems.
In a typical low-rank matrix factorization problem, we seek to approximate some given
data matrix by the product of two or more smaller matrices such that the difference
between the matrix and its factorized form is minimized with respect to some optimal-
ity criterion suitable for the problem at hand. Due to data sparsity in many applications,
this optimization problem is often cast under a regularization framework by introducing
an appropriate regularizer to prevent overfitting from occurring.

One common optimality criterion is the squared error or squared loss which is also
known as the ℓ2 loss. Singular value decomposition (SVD) is a conventional method
often used for solving the low-rank matrix factorization problem by minimizing the
squared error criterion. In many real-world applications, however, it is not unusual to
find noise, outliers and even missing entries in the data matrices. Under such circum-
stances, it has been shown that the ℓ2 loss lacks robustness. To overcome this problem,
⋆ The work was done when Tiansheng Yao was an undergraduate student in Zhejiang University.
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some robust matrix factorization methods have been developed under the framework of
minimizing the ℓ2 loss, e.g., [3].

An alternative optimality criterion is the ℓ1 loss which corresponds to the least ab-
solute deviations technique. One promising property of this criterion is its robustness
against outliers in the data. However, the non-smooth nature of the ℓ1 loss function
poses challenges to many optimization methods. Moreover, most of the existing fac-
torization methods [4, 5] that minimize the ℓ1 loss are based on linear programming
techniques which can incur high computational demand, making them unattractive for
handling large-scale data sets.

Inspired by previous work on probabilistic matrix factorization based on the ℓ2
loss [6], we propose in this paper a probabilistic method for robust matrix factoriza-
tion based on the ℓ1 loss and ℓ2 regularizer, which bear duality with the Laplace error
and Gaussian prior, respectively. For model learning, we devise an efficient expectation-
maximization (EM) algorithm by exploiting a hierarchical representation of the Laplace
distribution as a scaled mixture of Gaussians. We also present an online extension of
the learning algorithm.

It is worth noting that our model is closely related to the Robust Principal Compo-
nent Analysis (RPCA) model [7, 8]. Their relationship can be revealed by exploiting the
equivalence between the nuclear norm and the ℓ2-norm. As such, our method can also
be applied to the many computer vision applications to which RPCA has been applied.

The contributions of this paper are summarized below:

1. We propose a Probabilistic Robust Matrix Factorization (PRMF) model based on
the ℓ1 loss for robust low-rank matrix factorization in the presence of missing data
and outliers. In addition, we prove that PRMF is equivalent to RPCA under mild
conditions.

2. We devise a parallelizable EM algorithm for model learning which can potentially
be applied to large-scale applications. Moreover, we propose an online extension
of the algorithm for sequential data to offer further scalability.

2 Related Work

Matrix factorization under situations in which the data matrix is corrupted by outliers
is a computational problem that often arises in many computer vision applications. It
is well aware that the ℓ2 loss is far from satisfactory due to its high sensitivity to out-
liers. Recent years have witnessed various attempts to seek more robustness alternatives.
Among these, the ℓ1 loss has drawn arguably the most attention. Ke and Kanade [4] de-
veloped a robust matrix factorization method with a weighted ℓ1 loss and used linear
programming in each iteration of the optimization problem. Eriksson and Hengel [5]
extended the Wiberg algorithm originally developed for matrix factorization based on
the ℓ2 loss to matrix factorization based on the ℓ1 loss. They also used linear program-
ming in each iteration. As these methods require solving multiple linear programming
problems, one for each iteration, they have high computational cost and hence cannot
cope with large-scale data sets. Moreover, since these methods are not formulated under
the regularization framework, overfitting of the data is inevitable.
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As a parallel thread of development in recent years, probabilistic formulations of
matrix factorization have been proposed. Representative methods taking this approach
include Probabilistic Matrix Factorization (PMF) [6] and Bayesian Probabilistic Matrix
Factorization (BPMF) [9]. PMF is defined based on the Gaussian error and Gaussian
priors, making it equivalent to using the ℓ2 loss, while BPMF tries to improve PMF by
seeking a fully Bayesian treatment. Although both methods have achieved great suc-
cesses, they are still sensitive to outliers. Some attempts have been made recently to
address the robustness issue. For instance, Lakshminarayana et al. proposed the Robust
Bayesian Matrix Factorization (RBMF) model [10] for collaborative filtering applica-
tions.

Robust matrix factorization is also related to some recent advances in Robust Prin-
cipal Component Analysis (RPCA) [8, 7]. The underlying assumption of RPCA is that
the observed data matrix has an additive structure with a low-rank component and a sep-
arate sparse component. From a numerical optimization perspective, an efficient aug-
mented Lagrangian method was applied to solve the optimization problem for RPCA.
Subsequent work [11, 12] led to even more remarkable speedup. An online version of
RPCA was also proposed very recently [13]. Besides, RPCA has also been studied from
a probabilistic perspective. A fully Bayesian treatment was proposed in [14] by model-
ing the sparseness via the Bernoulli distribution, but inference in the model is very slow
due to its high model complexity.

3 Background

3.1 Notations

In this paper, Im denotes an m×m identity matrix. For matrices A = [aij ] ∈ Rm×n

and B = [bij ] ∈ Rp×q , A⊙B = [aijbij ]m×n denotes the Hadamard product of A
and B when m = p and n = q. We refer to several matrix norms in this paper with
∥A∥ denoting an arbitrary matrix norm of A. More specific matrix norms include the
ℓ1 norm ∥A∥1 =

∑
ij |aij |, ℓ2 norm (or Frobenius norm) ∥A∥2 = (

∑
ij a

2
ij)

1/2, and
nuclear norm (or trace norm) ∥A∥∗. As for vectors, we assume that all are column
vectors.

3.2 Matrix Factorization

Given a data matrix Y = [yij ] ∈ Rm×n possibly with some values missing, matrix
factorization can be formulated as the following optimization problem:

min
U∈Rm×r, V∈Rn×r

∥W ⊙ (Y −UV′)∥aa, (1)

where W = [wij ] is an m×n binary matrix to cater for the missing values in Y, with
wij = 1 if yij is available and wij = 0 if yij is missing. When a is either 1 or 2, it
corresponds to using the ℓ1 or ℓ2 norm, respectively, as loss function.

Since UA−1AV′ = UV′ holds for any r×r nonsingular matrix A, the problem
in Equation (1) is usually cast under a regularization framework to make the solution
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identifiable and avoid overfitting. One typical choice is to impose penalty on both U
and V to give the following regularized matrix factorization problem:

min
U, V

∥W ⊙ (Y −UV′)∥aa +
λu

2
∥U∥22 +

λv

2
∥V∥22, (2)

where λu, λv > 0 are regularization parameters.

4 Probabilistic Robust Matrix Factorization

In this section, we present the methodology of our paper. We first give a probabilistic
interpretation of robust matrix factorization in Section 4.1 and then state its relationship
with RPCA in Section 4.2. For computational advantages, we reformulate the model
in Section 4.3 by representing the Laplace error in the form of a scaled mixture of
Gaussians. Based on the new model formulation, we devise an EM algorithm in Sec-
tion 4.4 for model learning. We further propose an online extension of the algorithm in
Section 4.5 to deal with sequential data.

4.1 Probabilistic Interpretation

From a Bayesian perspective, the problem in Equation (2) corresponds to a maximum
a posteriori (MAP) estimation problem. While the loss function is the negative log-
likelihood, the regularization terms correspond to the negative log-priors. For example,
Salakhutdinov and Mnih [6] gave an example based on the Gaussian distribution which
corresponds to the ℓ2 loss and ℓ2 regularizer.

To achieve robustness, however, our focus is on matrix factorization under the ℓ1
loss, i.e., a = 1 in Equation (2). In particular, we consider the following probabilistic
model:

Y = UV′ +E, (3)

uij | λu ∼ N(uij |0, λ−1
u ), (4)

vij | λv ∼ N(vij |0, λ−1
v ) (5)

where E = [eij ] is an m×n error matrix. Each element eij is sampled independently
from the Laplace distribution L(eij |0, λ), implying that

p(E|λ) =
(
λ

2

)mn

exp{−λ∥E∥1}. (6)

By treating U and V as model parameters and λu, λv and λ as hyperparameters
with fixed values, we use MAP estimation to find U and V. From Bayes’ rule, we have

p(U,V|Y, λ, λu, λv) ∝ p(Y|U,V, λ) p(U|λu) p(V|λv). (7)

Thus,

log p(U,V|Y, λ, λu, λv) = −λ∥Y−UV′∥1 −
λu

2
∥U∥22 −

λv

2
∥V∥22 + C, (8)
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where C is a constant term independent of U and V. Obviously, the problem of max-
imizing log p(U,V|Y, λ, λu, λv) w.r.t. U and V is equivalent to the following mini-
mization problem:

min
U,V

∥Y−UV′∥1 +
λ′
u

2
∥U∥22 +

λ′
v

2
∥V∥22, (9)

where λ′
u = λu/λ and λ′

v = λv/λ. Note that we have omitted the binary matrix W in
the problem formulation because our method can incorporate W into the model easily,
with details to be presented in Section 4.4. Based on the analysis above, it can be seen
readily that conventional robust matrix factorization based on the ℓ1 loss can be derived
from our probabilistic formulation.

4.2 Relationship with RPCA

Besides giving the robust matrix factorization problem formulation in Equation (9) a
probabilistic interpretation, our model is also closely related to RPCA which is formu-
lated as follows,

min
X

∥Y −X∥1 + λr∥X∥∗, (10)

where λr is a fixed model parameter which gives a relative weighting of the ℓ1 loss and
the nuclear norm.

The connection between Equation (9) and Equation (10) follows from an important
property of the nuclear norm, in that the nuclear norm can be cast in terms of the ℓ2
norms of two factor matrices. A stronger condition in [15] is posed on the rank of the
decomposition as follows.

Lemma 1. For any matrix Z ∈ Rm×n, the following holds:

∥Z∥∗ = min
U,V,Z=UV′

1

2
(∥U∥22 + ∥V∥22).

If rank(Z) = k ≤ min{m,n}, then the minimum above is attained at a factor decom-
position Z = Um×kV

′
n×k.

Using Lemma 1, we can immediately get the following result:

Theorem 1. Suppose Xr is a solution for Equation (10) with rank(Xr) = k, then for
any solution Ur, Vr to Equation (9) with λ′

u = λ′
v = λr and r = k, UrV

′
r is also

a solution to Equation (10). This implies that the solution space of Equation (10) is
contained in that of Equation (9).

Proof. If we know that Xr is a solution for Equation (10), it is also a solution to

min
X,rank(X)=k

∥Y −X∥1 + λr∥X∥∗. (11)
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Since for any X with rank(X) = k, we can find Um×k and Vn×k satisfying X =
UV′. Then we have

min
U,V

∥Y −UV′∥1 +
λr

2
(∥U∥22 + ∥V∥22)

= min
U,V

∥Y −UV′∥1 + λr∥UV′∥∗

= min
X,rank(X)=k

∥Y −X∥1 + λr∥X∥∗.

The equivalence of criteria in Equation (9) and Equation (10) completes our proof.

Then for the solutions to Equation (9), Um×kV
′
n×k gives the solution to Equa-

tion (10). Moreover, it is easy to show that the SVD of Xr for the solution to Equa-
tion (10) gives one such solution to Equation (9). It is also worth noting that although
our algorithm will produce different estimations of U nad V under different initializa-
tions, the estimation of UV′ is stable as guaranteed by Theorem 1 and the convexity of
Equation (10).

4.3 Model Reformulation

While the model formulation given in Section 4.1 is rather straightforward, solving
the optimization problem directly would be computationally challenging due to the
non-smooth nature of the Laplace distribution. To address this computational issue,
we reformulate the model by exploiting a two-level hierarchical representation of the
Laplace distribution.

We first note that a random variable z follows a Laplace distribution L(z|u, α2) if
its probability density function (pdf) is given by

p(z|u, α2) =
α2

2
exp(−α2|z − u|).

There exists an important property [16] that the Laplace distribution can be equivalently
expressed as a scaled mixture of Gaussians, i.e.

L(z|u, α2) =

∫ ∞

0

N(z|u, τ) Expon(τ |α2) dτ,

where Expon(ν|α2) denotes an exponential distribution with pdf

p(ν|α2) =
α2

2
exp

(
− α2ν

2

)
.

To incorporate this hierarchical view of the Laplace distribution, we introduce a
matrix T = [τij ] ∈ Rm×n, where each element τij is a latent variable with exponential
prior for the corresponding yij . The latent variables introduced into the model relate the
ℓ1 loss to the (scaled) ℓ2 loss and hence render a closed-form solution possible. Let ui
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(a) PMF [6] (b) PRMF (proposed)

Fig. 1. PMF model vs. PRMF model. (a) PMF model with Gaussian distribution on yij;
(b) PRMF model with Laplace distribution on yij represented as a scaled mixture of Gaussians
via the latent variable τij .

be the ith row of U and vj be the jth row of V. The PRMF model is reformulated as
follows:

yij | U,V,T ∼ N(yij |u′
ivj , τij),

uij | λu ∼ N(uij |0, λ−1
u ),

vij | λv ∼ N(vij |0, λ−1
v ),

τij | λ ∼ Expon(τij |λ/2).

(12)

To facilitate the comparison of PRMF with PMF, Figures 1(a) and 1(b) show the graph-
ical models of PMF and PRMF, respectively, using the plate convention.

4.4 EM Algorithm

We devise an EM algorithm for the hierarchical model presented above. In particular,
we regard T as the missing data and θ = {U,V} as the parameters to be estimated
while the hyperparameters λu, λv, λ are fixed. To decouple the dependency between U
and V, we resort to the conditional EM (CEM) algorithm [17]. Specifically, each CEM
iteration consists of two EM steps, namely, updating V while fixing U and updating U
while fixing V.

Let us consider updating V while assuming U to be known and fixed. The E-step
computes the expectation of the complete-data log-posterior w.r.t. the missing data T,
given the current estimates of the parameters θ̂ = {Û, V̂}, i.e., it computes the so-called
Q-function with the following definition:

Q(V|θ̂) = ET[log p(V|Û,Y,T)|Y, θ̂]. (13)

In Equation (13) and the following, we make the dependency on the fixed hyperparam-
eters λu, λv and λ implicit for notational simplicity.

To compute the Q-function, we first apply Bayes’ rule. Then we take log on both
sides and ignore the terms that do not depend on V. The complete-data log-posterior
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log p(V|Y,T) can be expressed as

log p(Y|V, Û,T) + log p(V)

= −1

2

m∑
i

n∑
j

{τ−1
ij (yij−û′

ivj)
2} − λv

2

n∑
j

v′
jvj + C,

where C does not depend on U and V. It suffices to compute E[τ−1
ij |Y, θ̂] in the E-step.

With p(T|Y, Û, V̂) ∝ p(Y|Û, V̂,T)p(T) and each element τij of T follows an
exponential prior, we find that τ−1

ij follows an inverse Gaussian distribution. Thus, the
posterior expectation is given by

E[τ−1
ij |Y, Û, V̂] =

√
λ

|rij |
, ⟨τ−1

ij ⟩, (14)

with rij = yij − (UV′)ij . A complete derivation is given in the supplemental material.
The M-step then updates the parameter estimates in each row of V by maximizing

the Q-function in Equation (13) w.r.t. vj . By setting the partial derivative of the Q-
function w.r.t. vj to zero, we get a closed-form update formula as:

vj = (Û′ΩjÛ+ λvIr)
−1Û′Ωjy·j , (15)

where Ωj = diag(⟨τ−1
1j ⟩, . . . , ⟨τ−1

mj ⟩) and y·j is the jth column of Y.
In the next EM step which updates U while fixing V at the value obtained above, a

similar update formula can be obtained:

ui = (V̂′ΛiV̂ + λuIr)
−1V̂′Λiyi·, (16)

where Λi , diag(⟨τ−1
i1 ⟩, . . . , ⟨τ−1

in ⟩) and yi· is the ith row of Y. We note that our
algorithm can incorporate missing data easily. This can be done simply by setting the
corresponding ⟨τij⟩ to 0, meaning that it is a “complete outlier” and hence should not be
included in the calculation. The entire CEM algorithm is summarized in Algorithm 1.

We further notice that when we update U and V in the algorithm row by row, the
computation is highly parallelizable. Specifically, all the inner loops in each M-step are
independent of each other and hence can be dispatched to different servers in a cluster
because there is no data conflict. The results obtained by different servers are then
combined together. This could be a very favorable property to exploit when dealing
with massive data sets.

4.5 Online Extension

In some common computer vision applications of RPCA such as background modeling
and face shadow removal, usually the data arrive sequentially. However, all of the state-
of-the-art RPCA algorithms fail to capture this sequential nature. As a consequence,
when new data arrive, recomputation based on all the old and new data has to be per-
formed. Such a naı̈ve approach is clearly inefficient and memory demanding.

We note that the EM algorithm discussed above can easily be adapted to the online
setting to address this issue. In what follows, we discuss the computational steps in-
volved when the (t+ 1)th data point arrives.
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Algorithm 1 CEM algorithm for PRMF
1: Initialize U and V randomly.
2: while not convergent do
3: while V not convergent do
4: E-Step: ⟨τ−1

ij ⟩ =
√

λ
|rij |

5: M-Step:
6: for each ith row vi of V:
7: Ωi , diag(⟨τ−1

1i ⟩, . . . , ⟨τ−1
mi ⟩)

8: vi = (U′ΩiU+ λvIr)
−1U′Ωiy·i

9: end while
10: while U not convergent do
11: E-Step: ⟨τ−1

ij ⟩ =
√

λ
|rij |

12: M-Step:
13: for each jth row uj of U:
14: Λj , diag(⟨τ−1

j1 ⟩, . . . , ⟨τ−1
jn ⟩)

15: uj = (V′ΛjV + λuIr)
−1V′Λjyj·

16: end while
17: end while

Online E-step: This involves calculating the posterior expectation given the (t+1)th da-
tum. Specifically, we compute Ωt+1, with ⟨τ−1

t+1,j⟩ =
√
λ

|yt+1−vt+1U|j for j = 1, 2, . . .m.
Online M-step: We specify the update rules for U and V.

1. Update V: We note that Alg. 1 has already updated V row by row and hence we
do not need to modify it specifically. In particular, we have vt+1 = (U′Ωt+1U +
λvIr)

−1U′Ωt+1y·t+1 with Ωt+1 obtained in the online E-step.
2. Update U: Let V̂′ = [Ṽ′,v], where Ṽ ∈ Rt×r is from the t previous steps

and v is the (t + 1)th row just computed, and the ith row of Y is yi· = [ỹi, yi].

Furthermore, let Λi =

(
Λ̃i 0
0 σi

)
be a block-diagonal matrix with σi = ⟨τ−1

i,t+1⟩

and Λ̃i ∈ Rt×t, and Equation (16) can be written explicitly with the old and new
statistics separated, i.e.

ui = (Ṽ′Λ̃iṼ + σivv
′ + λvIr)

−1(Ṽ′Λ̃iỹi + σiyiv). (17)

To further enhance the efficiency of the online algorithm, we want to get rid of the
inverse operation by the Sherman-Morrison identity for rank-one matrix inversion:

(A+ vv′)−1 = A−1 − A−1vv′A−1

1 + v′A−1v
. (18)

Thus we can have an online updating mechanism for ui with the previous additive
statistics defined as

Ãi , (Ṽ′Λ̃iṼ + λvIr)
−1, B̃i , Ṽ′Λ̃iỹi. (19)

The update rules for the (t+ 1)th data point can be obtained readily:

Ai = Ãi −
σiÃivv

′Ãi

1 + σiv′Ãiv
, Bi = B̃i + σiyiv, ui = AiBi. (20)
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Algorithm 2 Online EM algorithm for PRMF
1: Initialize Ãi and B̃i using Algorithm 1 for a small batch of data points.
2: for the (t+ 1)th data point, t = 0, 1, . . . D do
3: while not convergent do
4: ⟨τ−1

j,t+1⟩ =
√

λ
|yt+1−vt+1U|j

for j = 1, 2, . . .m.

5: Ωt+1 = diag(⟨τ−1
1,t+1⟩, . . . , ⟨τ

−1
m,t+1⟩).

6: v = (U′Ωt+1U+ λvIr)
−1U′Ωt+1y·t+1

7: for each ui, i = 1, 2, . . . ,m do
8: σi = ⟨τ−1

i,t+1⟩
9: Ãi = Ãi/ρ, B̃i = B̃i × ρ

10: Ai = Ãi − σiÃivv
′Ãi

1+σiv′Ãiv′

11: Bi = B̃i + σiyiv
12: ui = AiBi

13: end for
14: end while
15: V′ = [V′,v]
16: Ãi = Ai and B̃i = Bi.
17: end for

In our experiments, we first warm-start with a small batch of data points for Ãi and
B̃i, and then update them incrementally as each new data point arrives. Besides, in
practice, we may also need to scale down the weight of the “past data” Ãi and B̃i

by a factor ρ to make the estimation fit the latest data better. Although we have not
conducted theoretical analysis to derive the convergence bounds, our empirical findings
show that the online algorithm does converge and has competitive performance in terms
of accuracy. The online EM algorithm is summarized in Algorithm 2.

5 Experiments

Now that we have presented our model in detail, we turn to its experimental vali-
dation by conducting experiments using both synthetic and real data sets. We com-
pare PRMF with several state-of-the-art matrix factorization methods, which include
PMF [6], RPCA [7], GoDec [12], and Bayesian Robust PCA (BRPCA) [14]. The
MATLAB implementations of all these methods can be found in their authors’ web-
sites. The desktop computer used to run our experiments has a 64-bit Intel Core i7-2600
processor and 8GB RAM.

5.1 Analysis on Synthetic Data

In this experiment, we assess the performance quantitatively on synthetic data sets of
various sizes. The parameters of all the compared algorithms have been carefully tuned.
To generate the data, each synthetic data point consists of two parts. The low-rank part
is the product of an m × r matrix and an r × n matrix, with each element of the
matrices generated i.i.d. from a Gaussian distribution. For the outlier part, we randomly
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choose 10% of the elements and add noise randomly drawn from a uniform distribution
defined on the range [−50, 50]. We do not explicitly introduce missing entries since our
method can treat them as a special type of outliers. To mimic more realistic settings with
additional random noise, we further add to each entry of the matrix a small noise term
drawn from N (0, 0.001). The performance comparison is tabulated in Table 1 using
performance measures for both efficiency and accuracy. In particular, the relative error
is computed with respect to the ground truth, which is defined as ∥M−N∥2

∥M∥2
, where N is

the recovered low-rank matrix and M is the ground-truth matrix.
From Table 1, we can see that except for PMF which is not a robust method, all

other methods have satisfactory performance in terms of recovery accuracy. However,
BRPCA has very high computational requirement and hence is significantly slower
than the other methods. For the 1000×1000 data matrix, it has taken about 1.5 hours to
complete. We do not have results for the larger matrices because the program does not
yet terminate even after running for five hours. We note that PRMF, RPCA and GoDec
are very comparable in terms of both efficiency and accuracy. While RPCA is efficient
for smaller matrices, PRMF is always the most efficient for matrices of size 1000×1000
or larger, showing a larger gap as the size and rank increase. Moreover, while tuning
the parameters for all algorithms to achieve the best results, we notice that the recovery
accuracy of PRMF is least sensitive to the parameters. This is a favorable property from
a practitioner’s point of view as less time will be needed on parameter tuning.

Table 1. Performance comparison of PRMF, RPCA, GoDec, BRPCA and the non-robust PMF.
Time is measured in seconds and the error measure has an implicit factor of 10−4.

Data matrix PRMF RPCA GoDec BRPCA PMF
Size Rank Time Error Time Error Time Error Time Error Time Error

100× 100 3 0.08 6.70 0.06 1.59 0.09 1.57 15.81 1.47 1.23 2.02E4
200× 200 5 0.21 4.12 0.27 1.06 0.25 1.08 50.04 1.09 4.83 1.12E4
500× 500 10 1.25 2.47 0.72 0.49 1.82 0.66 737.75 0.65 36.38 6.64E3

1000× 1000 15 3.47 0.52 6.31 0.49 8.98 0.47 5310.4 18.50 142.21 4.29E3
2000× 2000 20 15.40 0.34 42.32 0.34 70.27 0.32 NA NA 760.55 2.96E3
5000× 5000 25 176.17 0.21 793.96 0.23 234.08 0.21 NA NA 6268.60 2.04E3

We further examine the time requirements of PRMF more closely by varying the
matrix rank and size. For the experiment of varying size, we fix one dimension to 500
and then vary the other. The computation time is measured using the same convergence
criterion to facilitate comparison. Fig. 3 and Fig. 4 show the results. We can see that the
computation time needed generally increases linearly as the rank or size increases. This
further demonstrates that PRMF may be a good candidate for large-scale applications.

To study the convergence behavior of the online extension of the learning algorithm,
we monitor the trajectory of relative errors as the online algorithm is applied to the
synthetic data observed sequentially. As above, both the matrix rank and size are varied.
We warm-start the algorithm with a small batch of 20 data points. The results are shown
in Fig. 5 and Fig. 6. We note that convergence to a very low error level is often achieved
after observing a reasonably small number of data points. For the very low rank case
with rank equal to 5, warm-start initialization alone is sufficient to reach a very low
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error level. When the rank is higher, convergence generally takes longer but the number
of additional data points that need to be observed is still quite small.

5.2 Background Modeling

We now consider a real computer vision application which performs background model-
ing in surveillance video sequences. The goal of this application is to separate the static
background from the dynamic foreground which may include moving objects and vari-
ation in illumination. Since the background is relatively stationary, it is reasonable to
assume that its representation involves only a small number of latent factors. Therefore
the background is modeled by a low-rank matrix. On the other hand, the foreground
contains outliers which are relatively sparse. We sample 200 frames from each of two
popular video sequences 1 as test data. The result is depicted in Fig. 6. We can see that
PRMF preforms quite well on this task by separating the background and foreground
successfully. In addition, we also compare in Table 5.2 the time needed for the four
robust algorithms. We note the sequential nature of surveillance video data and hence

(a) Result of Bootstrap sequence (b) Result of Hall sequence

Fig. 6. Background modeling results. The leftmost image shows the original frame, the middle
one shows the background (low-rank), and the rightmost one shows the foreground (outlier).

PRMF RPCA GoDec BRPCA
Bootstrap 2.87 5.21 38.41 1602.60

Hall 3.61 7.91 39.37 2086.81

Table 2. Time comparison of PRMF, RPCA, GoDec and BRPCA in background modeling task

apply the online PRMF algorithm to investigate its performance qualitatively. Figure 7
shows the recovery result of the Hall sequence. In line with our observations on the syn-
thetic data, the recovery result improves as more frames are observed and incorporated
into the online algorithm. Visually, the residue on the reconstructed background reduces

1 http://perception.i2r.a-star.edu.sg/bk model/bk index.html
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greatly. In particular, the background modeling result is already quite satisfactory after
100 frames. We also compare our algorithm with a state-of-the-art online robust ma-

(a) Original video frames 5, 20, 50,
100, 150 and 200 of the Hall

(b) Extracted backgrounds of the
corresponding frames

Fig. 7. Background modeling results of the online algorithm.

trix factorization algorithm GRASTA [13] . We set up this experiment by following
the same settings in that paper. Specifically, in the Hall sequence, the first 100 frames
are cropped using a window of half of the video width. Starting from frame 101, the
window slides to the right by 20 pixels. In addition, to demonstrate its robustness to
missing data, we randomly drop 70% of the pixels. The results are illustrated in Fig. 8.
Both algorithms can adapt to the background changes successfully, but PRMF can give
a much cleaner background than that of GRASTA.

Fig. 8. Results with presenting missing entries and suddenly changed background. The first line
shows frames 40, 70, 100, 130, 170, 200 used for training. The second line shows the results
obtained by PRMF. The last line shows the results obtained by GRASTA [13]

6 Conclusion and Future Work

We have developed a novel probabilistic model in this paper for robust matrix factor-
ization based on the ℓ1 loss. The model is robust against outliers and missing data. We
have devised an efficient conditional EM algorithm for model learning. In addition, we
have also devised an online extension of the batch algorithm to handle sequential data
encountered in some applications. For experimental validation, we have compared our
model with some state-of-the-art robust matrix factorization algorithms on both syn-
thetic data and practical computer vision application. The experimental results are very
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encouraging. In particular, our model outperforms the other methods in terms of effi-
ciency particularly for large data matrices.

Our current model is based on the empirical Bayes approach. It would be interesting
to explore a fully Bayesian model for robust matrix factorization. In such a model,
inference may adopt a variational approximation approach or a sampling approach such
as a Gibbs sampler. Another possible future research direction is to enhance the model
for specific applications. In the background modeling application, for example, we may
incorporate the Markov property between video frameworks into the model to lead to
further improvement. Such extensions will be pursued in our future work.
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